APPENDIX A: # SAMPLE DATA FORMS FOR THE PROTOCOLS ### **APPENDIX A-1:** # **Habitat Assessment and Physicochemical Characterization Field Data Sheets** Form 1: Physical Characterization/Water Quality Field Data Sheet Form 2: Habitat Assessment Field Data Sheet - High Gradient Streams Form 3: Habitat Assessment Field Data Sheet - Low Gradient Streams # PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (FRONT) | STREAM NAME | | LOCATION | | | |----------------------------|---|----------------------------------|------------------|--| | STATION # R | IVERMILE | STREAM CLA | SS | | | LAT LO | ONG | RIVER BASIN | | | | STORET# | | AGENCY | | | | INVESTIGATORS | | | | | | FORM COMPLETED BY | | DATE
TIME | AM PM | REASON FOR SURVEY | | | | | | | | WEATHER
CONDITIONS | Now | | Past 24
hours | Has there been a heavy rain in the last 7 days? ☐ Yes ☐ No | | CONDITIONS | □ storm | (heavy rain) | | Air Temperature0 C | | | □ showers | steady rain)
(intermittent) | ō | Other | | | | loud cover
ear/sunny | □%
□ | Outr | | SITE LOCATION/MAP | | - | o anoac campl | led (or attach a photograph) | | SITE LOCATION/MAP | Draw a map of the sit | e and mulcate th | e ai eas sampi | eu (or attach a photograph) | STREAM
CHARACTERIZATION | Stream Subsystem Perennial Inte | ermittent 🖵 Tida | al. | Stream Type ☐ Coldwater ☐ Warmwater | | CHIMICIEMEATION | Stream Origin | annuem = Hua | | Catchment Area km ² | | | ☐ Glacial ☐ Non-glacial montane ☐ Swamp and bog | □ Spring-fed □ Mixture o □ Other | d
f origins | Catchinetit AleaKiii | # PHYSICAL CHARACTERIZATION/WATER QUALITY FIELD DATA SHEET (BACK) | WATERS
FEATURI | | □ Fores | Pasture Industria | rcial | Local Watershed NPS No evidence Some Obvious sources Local Watershed Erosi None Moderate | e potential sources | | | | |--------------------------------|---|---|---|--------------------------------|---|---|--|--|--| | RIPARIA
VEGETA
(18 meter | TION | | e the dominant type and
Sh
nt species present | | | rbaceous | | | | | INSTREA
FEATURI | | Estimat
Estimat
Samplin
Area in
Estimat | ed Reach Length ed Stream Width ng Reach Area km² (m²x1000) ed Stream Depth Velocitym | m
m²
km² | Canopy Cover Partly open Partly High Water Mark Proportion of Reach Romorphology Types Riffle % Pool % Channelized Yes Dam Present Yes | epresented by Stream Run% | | | | | LARGE V
DEBRIS | VOODY | | m² of LWDm | 2/km² (LWD/ | reach area) | | | | | | AQUATIO
VEGETA | | ☐ Roote ☐ Floati domina | | ooted submerge
tached Algae | nt 🚨 Rootêd floating | ☐ Free floating | | | | | WATER (| QUALITY | Specific
Dissolve
pH
Turbidi | cature0 C Conductance ed Oxygen ty ctrument Used | | Water Odors Normal/None Sewa Petroleum Fishy Water Surface Oils Slick Sheen None Other Turbidity (if not measu Clear Slightly tur Opaque Stained | Chemical Other | | | | | SEDIMEN
SUBSTRA | | Other Oils | al Sewage ical Anaerobic The Slight Moderate | | Looking at stones which are the undersides blace | ☐ Sludge ☐ Sawdust ☐ Paper fiber ☐ Sand ☐ Relict shells ☐ Other ☐ Looking at stones which are not deeply embedded, are the undersides black in color? | | | | | INC | | STRATE dd up to 1 | COMPONENTS | | ORGANIC SUBSTRATE C
(does not necessarily add | | | | | | Substrate
Type | Diamete | er | % Composition in Sampling Reach | Substrate
Type | Characteristic | % Composition in Sampling Area | | | | | Bedrock
Boulder | > 256 mm (10") | ı | | Detritus | sticks, wood, coarse plant
materials (CPOM) | | | | | | Cobble
Gravel | 64-256 mm (2.5
2-64 mm (0.1"-2 | | | Muck-Mud | black, very fine organic
(FPOM) | | | | | | Sand Silt Clay | 0.06-2mm (gritt
0.004-0.06 mm
< 0.004 mm (sli | ty) | | Marl | grey, shell fragments | | | | | ### HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (FRONT) | STREAM NAME | LOCATION | | | | | | |---------------------|--------------|-------------------|--|--|--|--| | STATION # RIVERMILE | STREAM CLASS | | | | | | | LAT LONG | RIVER BASIN | | | | | | | STORET# | AGENCY | | | | | | | INVESTIGATORS | | | | | | | | FORM COMPLETED BY | DATE AM PM | REASON FOR SURVEY | | | | | | | Habitat | | Condition | ı Category | | | | | | |--|---|---|---|---|---|--|--|--|--| | | Parameter | Optimal | Suboptimal | Marginal | Poor | | | | | | | 1. Epifaunal
Substrate/
Available Cover | Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient). | 40-70% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale). | 20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed. | Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking. | | | | | | | SCORE | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | | | | | n sampling reach | 2. Embeddedness | Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space. | Gravel, cobble, and
boulder particles are 25-
50% surrounded by fine
sediment. | Gravel, cobble, and
boulder particles are 50-
75% surrounded by fine
sediment. | Gravel, cobble, and
boulder particles are more
than 75% surrounded by
fine sediment. | | | | | | ted in | SCORE | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | | | | | Parameters to be evaluated in sampling reach | 3. Velocity/Depth
Regime | All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.) | Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes). | Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low). | Dominated by 1 velocity/depth regime (usually slow-deep). | | | | | | ıram | SCORE | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | | | | | Pa | 4. Sediment
Deposition | Little or no enlargement
of islands or point bars
and less than 5% of the
bottom affected by
sediment deposition. | Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools. | Moderate deposition of
new gravel, sand or fine
sediment on old and new
bars; 30-50% of the
bottom affected; sediment
deposits at obstructions,
constrictions, and bends;
moderate deposition of
pools prevalent. | Heavy deposits of fine
material, increased bar
development; more than
50% of the bottom
changing frequently;
pools almost absent due to
substantial sediment
deposition. | | | | | | | SCORE | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | | | | | | 5. Channel Flow
Status | Water reaches base of
both lower banks, and
minimal amount of
channel substrate is
exposed. | Water fills >75% of the available channel; or <25% of channel substrate is exposed. | Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed. | Very little water in
channel and mostly
present as standing pools. | | | | | | | SCORE | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | | | | ### HABITAT ASSESSMENT FIELD DATA SHEET—HIGH GRADIENT STREAMS (BACK) | | Habitat | | Condition | ı Category | | | | | | |--|--|--|--|--|---|--|--|--|--| | | Parameter Parameter | Optimal | Suboptimal | Marginal | Poor | | | | | | | 6. Channel
Alteration | Channelization or
dredging absent or
minimal; stream with
normal pattern. | Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present. | Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted. | Banks shored with gabion
or cement; over 80% of
the stream reach
channelized and
disrupted. Instream
habitat greatly altered or
removed entirely. | | | | | | | SCORE | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | | | | | ding reach | 7. Frequency of
Riffles (or bends) | Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important. | Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15. | Occasional riffle or bend;
bottom contours provide
some habitat; distance
between riffles divided by
the width of the stream is
between 15 to 25. | Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ratio of >25. | | | | | | samp | SCORE | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | | | | | Parameters to be evaluated broader than sampling reach | 8. Bank Stability
(score each bank)
Note: determine left
or right side by
facing downstream. | Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. <5% of bank affected. | Moderately stable;
infrequent, small areas of
erosion mostly healed
over. 5-30% of bank in
reach has areas of erosion. | Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods. | Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars. | | | | | | e eva | SCORE (LB) | Left Bank 10 9 | 8 7 6 | 5 4 3 | 2 1 0 | | | | | | to be | SCORE (RB) | Right Bank 10 9 | 8 7 6 | 5 4 3 | 2 1 0 | | | | | | Parameters | 9. Vegetative
Protection (score
each bank) | More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally. | 70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining. | 50-70% of the
streambank surfaces
covered by vegetation;
disruption obvious;
patches of bare soil or
closely cropped vegetation
common; less than one-
half of the potential plant
stubble height remaining. | Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height. | | | | | | | SCORE (LB) | Left Bank 10 9 | 8 7 6 | 5 4 3 | 2 1 0 | | | | | | | SCORE (RB) | Right Bank 10 9 | 8 7 6 | 5 4 3 | 2 1 0 | | | | | | | 10. Riparian
Vegetative Zone
Width (score each
bank riparian zone) | Width of riparian zone
>18 meters; human
activities (i.e., parking
lots, roadbeds, clear-cuts,
lawns, or crops) have not
impacted zone. | Width of riparian zone
12-18 meters; human
activities have impacted
zone only minimally. | Width of riparian zone 6-
12 meters; human
activities have impacted
zone a great deal. | Width of riparian zone <6 meters: little or no riparian vegetation due to human activities. | | | | | | | SCORE (LB) | Left Bank 10 9 | 8 7 6 | 5 4 3 | 2 1 0 | | | | | | | SCORE (RB) | Right Bank 10 9 | 8 7 6 | 5 4 3 | 2 1 0 | | | | | | | a | | |-------|-------|--| | Total | Score | | ### HABITAT ASSESSMENT FIELD DATA SHEET—LOW GRADIENT STREAMS (FRONT) | STREAM NAME | LOCATION | | | | | | |---------------------|--------------|-------------------|--|--|--|--| | STATION # RIVERMILE | STREAM CLASS | | | | | | | LAT LONG | RIVER BASIN | | | | | | | STORET# | AGENCY | | | | | | | INVESTIGATORS | | | | | | | | FORM COMPLETED BY | DATE AM PM | REASON FOR SURVEY | | | | | | | _ Habitat | | Condition | Category | | | | | | |--|---|---|---|---|--|--|--|--|--| | | Parameter | Optimal | Suboptimal | Marginal | Poor | | | | | | | 1. Epifaunal
Substrate/
Available Cover | Greater than 50% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient). | 30-50% mix of stable habitat; well-suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale). | 10-30% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed. | Less than 10% stable
habitat; lack of habitat is
obvious; substrate
unstable or lacking. | | | | | | each. | SCORE | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | | | | | Parameters to be evaluated in sampling reach | 2. Pool Substrate
Characterization | Mixture of substrate
materials, with gravel and
firm sand prevalent; root
mats and submerged
vegetation common. | Mixture of soft sand, mud, or clay; mud may be dominant; some root mats and submerged vegetation present. | All mud or clay or sand
bottom; little or no root
mat; no submerged
vegetation. | Hard-pan clay or bedrock; no root mat or vegetation. | | | | | | uate | SCORE | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | | | | | rs to be eval | 3. Pool Variability | Even mix of large-
shallow, large-deep,
small-shallow, small-deep
pools present. | Majority of pools large-deep; very few shallow. | Shallow pools much more prevalent than deep pools. | Majority of pools small-
shallow or pools absent. | | | | | | mete | SCORE | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | | | | | Para | 4. Sediment
Deposition | Little or no enlargement
of islands or point bars
and less than <20% of the
bottom affected by
sediment deposition. | Some new increase in bar formation, mostly from gravel, sand or fine sediment; 20-50% of the bottom affected; slight deposition in pools. | Moderate deposition of
new gravel, sand or fine
sediment on old and new
bars; 50-80% of the
bottom affected; sediment
deposits at obstructions,
constrictions, and bends;
moderate deposition of
pools prevalent. | Heavy deposits of fine material, increased bar development; more than 80% of the bottom changing frequently; pools almost absent due to substantial sediment deposition. | | | | | | | SCORE | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | | | | | | 5. Channel Flow
Status | Water reaches base of
both lower banks, and
minimal amount of
channel substrate is
exposed. | Water fills >75% of the available channel; or <25% of channel substrate is exposed. | Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed. | Very little water in
channel and mostly
present as standing pools. | | | | | | | SCORE | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | | | | ### HABITAT ASSESSMENT FIELD DATA SHEET—LOW GRADIENT STREAMS (BACK) | | Habitat | | Condition | Condition Category | | | | | | | | | | |--|--|--|--|---|---|--|--|--|--|--|--|--|--| | | Parameter | Optimal | Suboptimal | Marginal | Poor | | | | | | | | | | | 6. Channel
Alteration | Channelization or
dredging absent or
minimal; stream with
normal pattern. | Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present. | Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted. | Banks shored with gabion
or cement; over 80% of
the stream reach
channelized and disrupted.
Instream habitat greatly
altered or removed
entirely. | | | | | | | | | | | SCORE | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | | | | | | | | | npling reach | 7. Channel
Sinuosity | The bends in the stream increase the stream length 3 to 4 times longer than if it was in a straight line. (Note - channel braiding is considered normal in coastal plains and other low-lying areas. This parameter is not easily rated in these areas.) | The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line. | The bends in the stream increase the stream length 1 to 2 times longer than if it was in a straight line. | Channel straight;
waterway has been
channelized for a long
distance. | | | | | | | | | | ı san | SCORE | 20 19 18 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 0 | | | | | | | | | | Parameters to be evaluated broader than sampling reach | 8. Bank Stability
(score each bank) | Banks stable; evidence of
erosion or bank failure
absent or minimal; little
potential for future
problems. <5% of bank
affected. | Moderately stable;
infrequent, small areas of
erosion mostly healed
over. 5-30% of bank in
reach has areas of erosion. | Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods. | Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars. | | | | | | | | | | eva | SCORE (LB) | Left Bank 10 9 | 8 7 6 | 5 4 3 | 2 1 0 | | | | | | | | | | to be | SCORE (RB) | Right Bank 10 9 | 8 7 6 | 5 4 3 | 2 1 0 | | | | | | | | | | Parameters | 9. Vegetative Protection (score each bank) Note: determine left or right side by facing downstream. | More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or nonwoody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally. | 70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining. | 50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining. | Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height. | | | | | | | | | | | SCORE (LB) | Left Bank 10 9 | 8 7 6 | 5 4 3 | 2 1 0 | | | | | | | | | | | SCORE (RB) | Right Bank 10 9 | 8 7 6 | 5 4 3 | 2 1 0 | | | | | | | | | | | 10. Riparian
Vegetative Zone
Width (score each
bank riparian zone) | Width of riparian zone
>18 meters; human
activities (i.e., parking
lots, roadbeds, clear-cuts,
lawns, or crops) have not
impacted zone. | Width of riparian zone 12-
18 meters; human
activities have impacted
zone only minimally. | Width of riparian zone 6-
12 meters; human
activities have impacted
zone a great deal. | Width of riparian zone <6 meters: little or no riparian vegetation due to human activities. | | | | | | | | | | | SCORE (LB) | Left Bank 10 9 | 8 7 6 | 5 4 3 | 2 1 0 | | | | | | | | | | 1 | SCORE (RB) | Right Bank 10 9 | 8 7 6 | 5 4 3 | 2 1 0 | | | | | | | | | Total Score _____ ### **APPENDIX A-2:** ### **Periphyton Field and Laboratory Data Sheets** - Form 1: Periphyton Field Data Sheet - Form 2: Periphyton Sample Log-In Sheet - Form 3: Periphyton Soft Algae Laboratory Bench Sheet (front and back) - Form 4: Periphyton Diatom Laboratory Bench Sheet (front and back) - Form 5: Rapid Periphyton Survey Field Sheet ### PERIPHYTON FIELD DATA SHEET | STREAM NAME | | LOCATION | | |----------------------|--|---|-------------------| | STATION # | RIVERMILE | STREAM CLASS | | | LAT | LONG | RIVER BASIN | | | STORET# | | AGENCY | | | INVESTIGATORS | | | LOT NUMBER | | FORM COMPLETED | ВУ | DATE AM PM | REASON FOR SURVEY | | HABITAT TYPES | | each habitat type present% □ Gravel-Cobble%% □ Large Woody Debris □Run% | | | SAMPLE
COLLECTION | How were the samples coll If natural habitat collectio □ Sand-Silt-Mud-Muck | | Bedrock% | | GENERAL
COMMENTS | | | | | QUALITATIVE I | ISTING OF AQUATIC | ^P BIOTA | | Indicate estimated abundance: $0 = Absent/Not \ Observed, \ 1 = Rare \ (<5\%), \ 2 = Common \ (5\% - 30\%), \ 3 = Abundant \ (30\% - 70\%), \ 4 = Dominant \ (>70\%)$ | Periphyton | 0 | 1 | 2 | 3 | 4 | Slimes | 0 | 1 | 2 | 3 | 4 | |-------------------|---|---|----|---|---|--------------------|---|---|---|---|---| | Filamentous Algae | 0 | 1 | 2 | 3 | 4 | Macroinvertebrates | 0 | 1 | 2 | 3 | 4 | | Macrophytes | 0 | 1 | 2. | 3 | 4 | Fish | 0 | 1 | 2 | 3 | 4 | | ge or | tion | identification | | | | | | | | | | |--------------------------------|--------------------|----------------|--|--|--|--|--|--|--|--|--| | page | Date of Completion | mounting | | | | | | | | | | | | Q | sorting | | | | | | | | | | | | Lot Number | | | | | | | | | | | | N SHEET | | by Lab | | | | | | | | | | | PERIPHYTON SAMPLE LOG-IN SHEET | | | | | | | | | | | | | PER | Station # | | | | | | | | | | | | | Preservation | | | | | | | | | | | | | Number of | Containers | | | | | | | | | | | | Collected | Бу | | | | | | | | | | | | Date | Collected | | | | | | | | | | Serial Code Example: P0754001(1)P = Periphyton (B = Benthos, F = Fish)# 0754 = project number # 001 = sample number # (1) = lot number (e.g., winter 1996 = 1; summer 1996 = 2) ### PERIPHYTON SOFT ALGAE LABORATORY BENCH SHEET (FRONT) page _____ of ____ | STREAM NAME | | LOCATION | | | | | | |------------------------|-----------------|---------------------------|--|--|--|--|--| | STATION # | RIVERMILE | STREAM CLASS | | | | | | | LAT | LONG | RIVER BASIN | | | | | | | STORET # | LOT# | AGENCY | | | | | | | COLLECTORS INITIALS | DATE | TAXONOMISTS INITIALS DATE | | | | | | | SUBSAMPLE TARGET FOR S | OFT ALGAE □ 300 | □ 400 □ 500 □ Other | | | | | | | TAXA NAME | TALLY | CODE | # OF
CELLS | TCR | |-----------|-------|------|---------------|-----| Taxonomic certainty ratings (TCR) can be determined for each taxa or for the laboratory as a whole. The TCR scale is 1-5, with: 1 = most certain and 5 = least certain. If rating is 3-5, give reason. The number of cells for filamentous algae is an estimate of relative biomass. Total No. Algal cells Total No. Taxa ### PERIPHYTON SOFT ALGAE LABORATORY BENCH SHEET (BACK) | STREAM IDENTIFICATION CODE | DATE COUNTED | |--------------------------------|-------------------------------| | COUNTED TRANSECT LENGTH | COUNTED TRANSECT WIDTH | | SIZE OF COVERGLASS | TOTAL SAMPLE VOLUME | | VOLUME OF SAMPLE ON COVERGLASS | SAMPLE DILUTION FACTOR | | PROPORTION OF SAMPLE COUNTED | AREA OF SUBSTRATE SAMPLED | | TOTAL NUMBER OF CELLS COUNTED | TOTAL ASSEMBLAGE CELL DENSITY | | TAXONOMY | Explair | n TCR ratings | of 3-5: | | | | | | | |----------|---|------------------------------|---------|----------------|------------|--|--|--|--| | Date | Other Comments (e.g. condition of algae): | | | | | | | | | | | QC: | ☐ YES | □ NO | | QC Checker | | | | | | | Algal r
Verific | ecognition
ation complete | □ pass | □ fail
□ NO | ### PERIPHYTON DIATOM LABORATORY BENCH SHEET (FRONT) page _____ of ____ | STREAM NAME | | LOCATION | | | | | | | |------------------------|--------------------|---------------------------|--|--|--|--|--|--| | STATION # | RIVERMILE | STREAM CLASS | | | | | | | | LAT | LONG | RIVER BASIN | | | | | | | | STORET # | LOT# | AGENCY | | | | | | | | COLLECTORS INITIALS | DATE | TAXONOMISTS INITIALS DATE | | | | | | | | SUBSAMPLE TARGET FOR I | DIATOM □ 300 □ 400 | □ 600 □ Other | | | | | | | | TAXA NAME | TALLY (# of valves) | CODE | # OF
CELLS | TCR | |-----------|---------------------|------|---------------|-----| tal No. Algal cells | Total No. Taxa | |---|---|--| | certain and $5 = \text{least certain}$. If rating is 3-5, give reason. | The number of cells for filamentous algae is | an estimate of relative biomass | | Taxonomic certainty ratings (TCR) can be determined for | r each taxa or for the laboratory as a whole. | The TCR scale is 1-5, with: $I = most$ | ### PERIPHYTON DIATOM LABORATORY BENCH SHEET (BACK) | TAXONOMY | Explain TCR ratings of 3 | Explain TCR ratings of 3-5: | | | | | | | | | | | |-----------------------|--|---|----------------|--|--|--|--|--|--|--|--|--| | ID | | | | | | | | | | | | | | Date | Other Comments (e.g. con | Other Comments (e.g. condition of algae): | OC. DVE | ПМО | OC Charles | | | | | | | | | | | | QC: □ YES | □NO | QC Checker | | | | | | | | | | | | Algal recognition
Verification complete | □ pass
□ YES | □ fail
□ NO | General Comments (use | this space to add additional | comments): | # RAPID PERIPHYTON SURVEY FIELD SHEET | STREAM NAME | | LOCATION | | |---------------------|-----------|----------------------|------| | STATION # | RIVERMILE | STREAM CLASS | | | LAT | TONG | RIVER BASIN | | | STORET # | TOT# | AGENCY | | | COLLECTORS INITIALS | DATE | TAXONOMISTS INITIALS | DATE | | | | | | | ASSESSED BY | |-----------------| | GRID AREA | | ID MACROALGA #1 | | ID MACROALGA #2 | | ID MICROALGA #1 | | ID MICROALGA #2 | | | 5 | | | | | | | |---|-----------|--|--|--|--|--|----------------------| | | 4 | | | | | | | | A #2
ED BY
SANK | 3 | | | | | | | | OALG
OVER
NESS I | 2 | | | | | | | | MICROALGA #2
DOTS COVERED BY
THICKNESS RANK | 1 | | | | | | | | Ŏ L | 0.5 | | | | | | | | • | 0 | | | | | | | | | 5 | | | | | | | | · | 4 | | | | | | | | A #1
ED BY
SANK | 3 | | | | | | | | MICROALGA #1
DOTS COVERED BY
THICKNESS RANK | 2 | | | | | | | | MICRO
DTS CO
HICKD | 1 | | | | | | | | | 0.5 | | | | | | | | • | 0 | | | | | | | | # DOTS
MICROALGA | SUBSINALE | | | | | | | | MACROALGA
#2 DOTS | COVERED | | | | | | | | MACROALGA
#1 DOTS | COVENED | | | | | | | | # DOTS IN
GRID AREA | | | | | | | | | TRANSECT/
VIEW# | | | | | | | TOTAL # DOTS AT SITE | General Comments: ### **APPENDIX A-3:** ### Benthic Macroinvertebrate Field and Laboratory Data Sheets Form 1: Benthic Macroinvertebrate Field Data Sheet Form 2: Benthic Macroinvertebrate Sample Log-In Sheet Form 3: Benthic Macroinvertebrate Laboratory Bench Sheet Form 4: Preliminary Assessment Score Sheet (Pass) ### BENTHIC MACROINVERTEBRATE FIELD DATA SHEET | | | _ | _ | | | | | _ | _ | _ | | | | _ | _ | _ | | |--|----------|---------------------|--------------|-------|--------------|---------------------------------------|------------------------------|-------|--------------------|-----------|-------------------|--|------|------|---|---|---| | STREAM NAME | | | | | | LOCATION | N | | | | | | | | | | | | STATION # | R | IVE | RM | ILE_ | | STREAM C | _ STREAM CLASS | | | | | | | | | | | | LAT | _ L(| ONC | 3 | | | RIVER BA | RIVER BASIN | | | | | | | | | | | | STORET# | | | | | | AGENCY | AGENCY | | | | | | | | | | | | INVESTIGATORS | | | | | | | LOT NUMBER | | | | | | | | | | | | FORM COMPLETED BY | | | | | | DATE
TIME | DATE AM PM REASON FOR SURVEY | | | | | | | | | | | | HABITAT TYPES | | Cob | ble_ | | % | tage of each habitat Snags% phytes% | ľΩV | eget | ated | Ban
(| ks | % | % | | | | | | SAMPLE
COLLECTION | He
In | ow v
dica
Cob | were ite th | the s | samp
ımbe | | □ wadin
n in each
□ V | g hal | Other Ditat ated | from type | m baı
e.
ks | nk 🖵 from boa | at | | | | | | GENERAL COMMENTS QUALITATIVE I | | | | | | | | | | | | | | | | | | | Dominant | l abı | ınd | ance | e: (| | | rved, 1 | | | | ; = C | Common, 3= Abun | | | | | | | Periphyton | | | | | | 1 2 3 4 | | | mes | | | | | | 2 | | | | Filamentous Algae | | | | | | 1 2 3 4 | | | | | | rates | | | 2 | | | | Macrophytes FIELD OBSERVA Indicate estimated | ATIO | ONS | S Ol | e: | ACI
0 = | Absent/Not Obse | | 1 = | Rar | e (1 | l-3 o | rganisms), 2 = Cor
, 4 = Dominant (>. | mmoi | n (3 | | | · | | Porifera | 0 | 1 | 2 | 3 | 4 | Anisoptera | 0 | 1 | 2 | 3 | 4 | Chironomidae | 0 | 1 | 2 | 3 | 4 | | Hydrozoa | 0 | 1 | 2 | 3 | 4 | Zygoptera | 0 | 1 | 2 | 3 | 4 | Ephemeroptera | 0 | 1 | 2 | 3 | 4 | | Platyhelminthes | 0 | 1 | 2 | 3 | 4 | Hemiptera | 0 | 1 | 2 | 3 | 4 | Trichoptera | 0 | 1 | 2 | 3 | 4 | | Turbellaria | 0 | 1 | 2 | 3 | 4 | Coleoptera | 0 | 1 | 2 | 3 | 4 | Other | 0 | 1 | 2 | 3 | 4 | | Hirudinea | 0 | 1 | 2 | 3 | 4 | Lepidoptera | 0 | 1 | 2 | 3 | 4 | | | | | | | | Oligochaeta | 0 | 1 | 2 | 3 | 4 | Sialidae | 0 | 1 | 2 | 3 | 4 | | | | | | | | Isopoda | 0 | 1 | 2 | 3 | 4 | Corydalidae | 0 | 1 | 2 | 3 | 4 | | | | | | | | Amphipoda | 0 | 1 | 2 | 3 | 4 | Tipulidae | 0 | 1 | 2 | 3 | 4 | | | | | | | | Decapoda | 0 | 1 | 2 | 3 | 4 | Empididae | 0 | 1 | 2 | 3 | 4 | | | | | | | | Gastropoda | 0 | 1 | 2 | 3 | 4 | Simuliidae | 0 | 1 | 2 | 3 | 4 | 1 | | | | | | Culcidae 0 1 2 3 4 Tabinidae Bivalvia | | | 1 | | | | | | | | | | | |------|---------------------------------------|--------------------------|----------------|--|--|--|--|--|--|--|--|--| | e of | | ion | identification | | | | | | | | | | | page | | Date of Completion | mounting | | | | | | | | | | | | | Dž | sorting | | | | | | | | | | | | NSHEEL | Lot Number | | | | | | | | | | | | | 'LE LOG-1 | Date Received | oy Lao | | | | | | | | | | | | MACKOINVEKTEBKATE SAMPLE LOG-IN SHEET | Stream Name and Location | | | | | | | | | | | | | IIC MACK | Station | # | | | | | | | | | | | | BENIHIC | Preservation | | | | | | | | | | | | | | Number of | Comamers | | | | | | | | | | | | | Collected | ρλ | | | | | | | | | | | | | Date | Collected | | | | | | | | | | Serial Code Example: B0754001(1) B = Benthos (F = Fish; P = Periphyton)# 0754 = project number # 001 = sample number # (1) = lot number (e.g., winter 1996 = 1; summer 1996 = 2) ### BENTHIC MACROINVERTEBRATE LABORATORY BENCH SHEET (FRONT) page _____ of | | | 1 8 | |--------------|-----------|--| | STREAM NAME | | LOCATION | | STATION # | RIVERMILE | STREAM CLASS | | LAT | LONG | RIVER BASIN | | STORET# | | AGENCY | | COLLECTED BY | DATE | LOT# | | TAXONOMIST | DATE | SUBSAMPLE TARGET □ 100 □ 200 □ 300 □ Other | | Organisms | No. | LS | TI | TCR | d Species name on blank
Organisms | No. | LS | TI | TCR | |---------------|-----|----|----|-----|--------------------------------------|-----|----|----|-----| | | No. | LS | 11 | ICK | | No. | LS | 11 | ICK | | Oligochaeta | | | | | Megaloptera | | | | | | | | | | | | | | | | | Hirudinea | | | | | Coleoptera | | | | | | | | | | | | | | | | | Isopoda | Amphipoda | | | | | Diptera | | | | | | | | | | | | | | | | | Decapoda | Ephemeroptera | | | | | | | | | | | | | | | | Gastropoda | Pelecypoda | | | | | | Plecoptera | Other | Trichoptera | Hemiptera | Taxonomic certainty rating (TCR) 1-5:1=most certain, 5=least certain. If rating is 3-5, give reason (e.g., missing gills). | LS= life stage: I = | |--|---------------------| | immature; $P = pupa$; $A = adult TI = Taxonomists initials$ | | | Total No. Organisms | Total No. Taxa | | |---------------------|----------------|--| | - Otto - 100 O - 5 | | | ### BENTHIC MACROINVERTEBRATE LABORATORY BENCH SHEET (BACK) | SUBSAMPLING/SORTING INFORMATION Sorter Date | Number of grids picked: Time expenditure Indicate the presence of large or o | No. of organisms bviously abundant organisms: | |---|--|--| | | # organisms originally sorted # organisms originally sorted checker ≥90%, sample passes <90%, sample fails, action taken | tod by # organisms originally sorted # officiency # organisms # sorting officiency # organisms organ | | TAXONOMY ID Date | Explain TCR ratings of 3-5: Other Comments (e.g. condition of QC: | f specimens): QC Checker | | | Organism recognition Verification complete | □ pass □ fail □ YES □ NO | # PRELIMINARY ASSESSMENT SCORE SHEET (PASS) | | | | | page or | |--------------|----------|-------------|--------------------|------------------| | STREAM NAME | | | LOCATION | | | STATION # | | RIVERMILE | STREAM CLASS | | | LAT | | LONG | RIVER BASIN | | | STORET# | | | AGENCY | | | COLLECTED BY | | DATE | LOT # | NUMBER OF SWEEPS | | HABITATS: | □ COBBLE | ☐ SHOREZONE | □ SNAGS □ VEGETATI | ON | Enter Family and/or Genus and Species name on blank line. No. LS ΤI TCR ΤI TCR **Organisms Organisms** No. LS Oligochaeta Megaloptera Hirudinea Coleoptera Isopoda Diptera Amphipoda Decapoda Ephemeroptera Gastropoda Pelecypoda Plecoptera Other Trichoptera Taxonomic certainty rating (TCR) 1-5:1=most certain, 5=least certain. If rating is 3-5, give reason (e.g., missing gills). LS= life stage: I = immature; P = pupa; A = adult TI = Taxonomists initials Hemiptera | | Site Value | Target Threshold | If 2 or more metrics are > target threshold, site is | |------------------------|------------|------------------|---| | Total No. Taxa | | | HEALTHY | | EPT Taxa | | | If less than 2 metrics are within target range, site is | | Tolerance Index | | | SUSPECTED IMPAIRED | # **APPENDIX A-4:** # Fish Field and Laboratory Data Sheets Form 1: Fish Sampling Field Data Sheet Form 2: Fish Sample Log-In Sheet ### FISH SAMPLING FIELD DATA SHEET (FRONT) | | | | | | | | | | | paş | ge | | of _ | | |----------------------|--------------------------------------|---|-----------|----------|---------|---------|---------|---------|-------------|-------|------|----|------|---| | STREAM NAME | | | LOC | ATION | | | _ | | | | | | | | | STATION # | _ RIVERMILE | | STRI | EAM CLA | SS | | | | | | | | | | | LAT | LONG | | RIVE | ER BASIN | | | | | | | | | | | | STORET# | | | AGE | NCY | | | | | | | | | | | | GEAR | | | INVE | ESTIGATO | ORS | | | | | | | | | | | FORM COMPLETED | BY | | | E | | | EASON F | FOR SUF | RVEY | | | | | | | SAMPLE
COLLECTION | How were the | _ | | _ | ☐ tot | e barge | | | □ of | her _ | | | | | | | Block nets us | ed? □Y | YES | □NO | | | | | | | | | | | | | Sampling Du | ration Sta | rt time _ | | _ End t | ation _ | | | | | | | | | | | Stream width | (in meters) |) Ma | ıx | Mear | | | | | | | | | | | HABITAT TYPES | Indicate the p □ Riffles □ Submerged | dicate the percentage of each habitat type present Riffles% □ Pools% □ Runs% □ Snags% Submerged Macrophytes% □ Other ()% | | | | | | | | | | | | | | GENERAL
COMMENTS | | | | | | | | | | | | | | | | SPECIES | TOTAL | OPTION | AL: LEN | NGTH (m) | m)/WEIG | HT (g) | | | A | NOM | ALIE | s* | | | | 2 | (COUNT) | | | EN MAX S | | | | | | | | | | 7 | | | | | | | | | D | Е | F | L | M | S | Т | Z | - | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | - | | | | | | | | | | Т | | | | | | | | Г | - | | | | | | | | | | | | | | | | - | ### FISH SAMPLING FIELD DATA SHEET (BACK) | SPECIES | TOTAL (COUNT) | OPTION (25.5) | NAL: LEI | NGTH (m
EN MAX S | m)/WEIG | | | A | NOM | ALIE | s* | | | | |---------|---------------|---------------|-----------|--|---------------|-----|---|---|-----|------|----|---|---|---| | | (COCIVI) | (23) | or Echvii | J1 | O D D T T T T | LE) | D | E | F | L | M | S | T | Z | <u> </u> | | | | | - | | | | | | | | | | | | | | | | 1 | 4 | | | | | | | | | | | <u> </u> | | | | | - | | | | | | | | | | | | | | | | - | | | | | | | | | | Τ | 1 | | | | | | | | | | | | | | | | 1 | 4 | | | | | | | | | | | <u> </u> | | | | | 1 | | | | | | | | | | | | | | | | - | | | | | | | | | | T | - | | | | | | | | | | | | | | | \vdash | | | | | 1 | - | | | | | | | | | | | | | | | | - | | | | | | | | | * | | | I | | | | | | | | | | | | ^{*} ANOMALY CODES: D = deformities; E = eroded fins; F = fungus; L = lesions; M = multiple DELT anomalies; S = emaciated; Z = other | eof | | ис | identification | | | | | | | | | | |------|--------------------------|--------------------------|----------------|--|--|--|--|--|--|--|--|--| | page | | Date of Completion | mounting | | | | | | | | | | | | | Da | sorting | | | | | | | | | | | | | Lot Number | | | | | | | | | | | | | ET | Date Received | ру Lab | | | | | | | | | | | | FISH SAMPLE LOG-IN SHEET | ocation | | | | | | | | | | | | | MPLELO | Stream Name and Location | | | | | | | | | | | | | FISH SA | эдS | | | | | | | | | | | | | | Station # | | | | | | | | | | | | | | Preservation | | | | | | | | | | | | | | Number of | Containers | | | | | | | | | | | | | Collected By | | | | | | | | | | | | | | Date | Collected | | | | | | | | | | Serial Code Example: F0754001(1) F = Frish (B = Benthos; P = Periphyton)# 0754 = project number # 001 = sample number # (1) = lot number (e.g., winter 1996 = 1; summer 1996 = 2)